A K-means Based Competitive Learning with Text Description Language Features for Practical Botanical Systematics

نویسنده

  • WEN-SEN LEE
چکیده

The practical methodologies of stable pattern classification using artificial intelligence as advisory tools are researched here according to studies in the flowering plant genera Lithops N.E. Br. (Aizoaceae). In this paper, the use of K-means model is a practical generation of groups as a classifier for botanical taxa. In order to provide comparisons for this study of effective classification performance, the study here in the succulent plant genus Lithops involved the classification of 87 records that comprise about 35 species. It is demonstrated that the proposed system using artificial neural networks technique with statistical property of grouping method can achieve a classification rate of 88.57% separated records into 35 groups referred to the traditional plant taxonomic groups. Key-Words: K-means, botanical taxa, succulent plant, taxonomic

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification

Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

Corpus based coreference resolution for Farsi text

"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...

متن کامل

Clustering of nasopharyngeal carcinoma intensity modulated radiation therapy plans based on k-means algorithm and geometrical features

Background: The design of intensity modulated radiation therapy (IMRT) plans is difficult and time-consuming. The retrieval of similar IMRT plans from the IMRT plan dataset can effectively improve the quality and efficiency of IMRT plans and automate the design of IMRT planning. However, the large IMRT plans datasets will bring inefficient retrieval result. Materials and Methods: An intensity-m...

متن کامل

Comparing k-means clusters on parallel Persian-English corpus

This paper compares clusters of aligned Persian and English texts obtained from k-means method. Text clustering has many applications in various fields of natural language processing. So far, much English documents clustering research has been accomplished. Now this question arises, are the results of them extendable to other languages? Since the goal of document clustering is grouping of docum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010